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Model Selection
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Which model should we choose?

(1): f1(x) = a0 + a1x (2): f2(x) =

3∑
j=0

ajxj (3): f3(x) =

104∑
j=0

ajxj
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How do we learn?

I The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

I An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.
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Bayesian Deep Learning

Why?

I A powerful framework for model construction and understanding generalization

I Uncertainty representation and calibration (crucial for decision making)

I Better point estimates

I Interpretably incorporate prior knowledge and domain expertise

I It was the most successful approach at the end of the second wave of neural
networks (Neal, 1998).

I Neural nets are much less mysterious when viewed through the lens of
probability theory.

Why not?

I Can be computationally intractable (but doesn’t have to be).

I Can involve a lot of moving parts (but doesn’t have to).

There has been exciting progress in the last year addressing these limitations.
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Wide Optima Generalize Better

Keskar et. al (2017)

I Bayesian integration will give very different predictions in deep learning
especially!
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Bayesian Deep Learning

Sum rule: p(x) =
∑

x p(x, y). Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x).

p(y|x∗, y,X) =

∫
p(y|x∗,w)p(w|y,X)dw . (1)

I Think of each setting of w as a different model. Eq. (1) is a Bayesian model
average, an average of infinitely many models weighted by their posterior
probabilities.

I Automatically calibrated complexity even with highly flexible models.

I Can view classical training as using an approximate posterior
q(w|y,X) = δ(w = wMAP).

I Typically more interested in the induced distribution over functions than in
parameters w. Can be hard to have intuitions for priors on p(w).
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Mode Connectivity

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, A.G. Wilson

NeurIPS 2018
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Mode Connectivity
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Mode Connectivity
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Mode Connectivity
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Mode Connectivity
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Uncertainty Representation with SWAG

1. Leverage theory that shows SGD with a
constant learning rate is approximately
sampling from a Gaussian distribution.

2. Compute first two moments of SGD
trajectory (SWA computes just the first).

3. Use these moments to construct a Gaussian
approximation in weight space.

4. Sample from this Gaussian distribution, pass
samples through predictive distribution, and
form a Bayesian model average.

p(y∗|D) ≈ 1
J

J∑
j=1

p(y∗|wj) , wj ∼ q(w|D) , q(w|D) = N (w̄,K)

w̄ =
1
T

∑
t

wt , K =
1
2

(
1

T − 1

∑
t

(wt − w̄)(wt − w̄)T +
1

T − 1

∑
t

diag(wi − w̄)2

)
A Simple Baseline for Bayesian Uncertainty in Deep Learning
W. Maddox, P. Izmailov, T. Garipov, D. Vetrov, A.G. Wilson
NeurIPS 2019
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Trajectory in PCA Subspace
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Uncertainty Calibration
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WideResNet28x10 CIFAR-100
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WideResNet28x10 CIFAR-10 → STL-10
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DenseNet-161 ImageNet
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ResNet-152 ImageNet
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SWAG Regression Uncertainty
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SWAG Visualization
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Subspace Inference for Bayesian Deep Learning

A modular approach:

I Construct a subspace of a network with a high dimensional parameter space

I Perform inference directly in the subspace

I Sample from approximate posterior for Bayesian model averaging

We can approximate the posterior of a WideResNet with 36 million parameters
in a 5D subspace and achieve state-of-the-art results!
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Subspace Construction

I Choose shift ŵ and basis vectors {d1, . . . , dk}.
I Define subspace S = {w|w = ŵ + z1d1 + zkdk}.
I Likelihood p(D|z) = pM(D|w = ŵ + Pz).
I Posterior inference p(z|D) ∝ p(D|z)p(z).
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal

23 / 43



Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal

28 / 43



Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Curve Subspace Traversal
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Subspace Comparison (Regression)
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Subspace Comparison (Classification)
Accuracy and NLL on CIFAR-100

Bayesian methods also lead to better point predictions in deep learning!

Subspace Inference for Bayesian Deep Learning
P. Izmailov, W. Maddox, P. Kirichenko, T. Garipov, D. Vetrov, A.G. Wilson

UAI 2019
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Conclusions

I Neural networks represent many compelling solutions to a given problem, and a
very underspecified by the available data. This is the perfect situation for
Bayesian marginalization.

I Even if we cannot perfectly express our priors, or perform full Bayesian
inference, we can try our best and get much better point predictions as well as
improved calibration. We can view standard training as an impoverished
Bayesian approximation.

I By exploiting information about the loss geometry in training, we can scale
Bayesian neural networks to ImageNet with improvements in accuracy and
calibration, and essentially no runtime overhead.
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Join Us!

There is a postdoc opening in my group!

Join an energetic and ambitious team of scientists in
New York City, looking to address big open
questions in core machine learning.
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Scalable Gaussian Processes

I Run exact GPs on millions of points in minutes.

I Outperforms stand-alone deep neural networks by learning deep kernels.

I Implemented in our new library GPyTorch: gpytorch.ai
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Gaussian processes: a function space view

Gaussian processes provide an intuitive function space perspective on learning
and generalization.

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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BoTorch: Bayesian Optimization in PyTorch

I Probabilistic active learning

I Black box objectives, hyperparameter tuning, A/B testing, global optimization.
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Probabilistic Reinforcement Learning

Robust, sample efficient online decision making under uncertainty.
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